2.5 V/3.3 V 1:5 Differential ECL/PECL/HSTL/LVDS Clock Driver

MC100ES6014

Product Discontinuance Notice – Last Time Buy Expires on (12/3/2013)

DATA SHEET

The MC100ES6014 is a low skew 1-to-5 differential driver, designed with clock distribution in mind, accepting two clock sources into an input multiplexer. The ECL/PECL input signals can be either differential or single-ended (if the V_{BB} output is used). HSTL and LVDS inputs can be used when the ES6014 is operating under PECL conditions.

The ES6014 specifically guarantees low output-to-output skew. Optimal design, layout, and processing minimize skew within a device and from device to device.

To ensure that the tight skew specification is realized, both sides of any differential output need to be terminated identically into 50 Ω even if only one output is being used. If an output pair is unused, both outputs may be left open (unterminated) without affecting skew.

The common enable $(\overline{\text{EN}})$ is synchronous, outputs are enabled/disabled in the LOW state. This avoids a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock; therefore, all associated specification limits are referenced to the negative edge of the clock input.

The MC100ES6014, as with most other ECL devices, can be operated from a positive V_{CC} supply in PECL mode. This allows the ES6014 to be used for high performance clock distribution in +3.3 V or +2.5 V systems. Single ended CLK input pin operation is limited to a V_{CC} \geq 3.0 V in PECL mode, or V_{EE} \leq -3.0 V in ECL mode. Designers can take advantage of the ES6014's performance to distribute low skew clocks across the backplane or the board.

Features

- 25 ps Within Device Skew
- 400 ps Typical Propagation Delay
- Maximum Frequency > 2 GHz Typical
- The 100 Series Contains Temperature Compensation
- PECL and HSTL Mode: V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V
- ECL Mode: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- LVDS and HSTL Input Compatible
- Open Input Default State
- 20-Lead Pb-Free Package Available
- Replacement part: ICS853S014I

ORDERING INFORMATION

Device	Package
MC100ES6014EJ	TSSOP-20 (Pb-Free)
MC100ES6014EJR2	TSSOP-20 (Pb-Free)

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1	. 20-Lead	Pinout (Тор	View)	and	Logic Diagram	
----------	-----------	----------	-----	-------	-----	---------------	--

Table 1. Pin Description

Pin	Function
CLK0*, CLK0**	ECL/PECL/HSTL CLK Input
CLK1*, CLK1**	ECL/PECL/HSTL CLK Input
Q0:4, Q0:4	ECL/PECL Outputs
CLK_SEL*	ECL/PECL Active Clock Select Input
EN*	ECL Sync Enable
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply

* Pins will default LOW when left open.

** Pins will default to $V_{CC}/2$ when left open.

Table 3. General specifications

Characte	Value	
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor	75 kΩ	
ESD Protection	Human Body Model Machine Model Charged Device Model	> 2000 V > 200 V > 1500 V
Thermal Resistance (Junction-to-Ambient)	0 LFPM, 20 TSSOP 500 LFPM, 20 TSSOP	140°C/W 100°C/W

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 2. Function Table

CLK0	CLK1	CLK_SEL	EN	Q
L	Х	L	L	L
Н	Х	L	L	Н
Х	L	Н	L	L
Х	Н	Н	L	Н
Х	Х	Х	Н	L*

* On next negative transition of CLK0 or CLK1

Symbol	Characteristic	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} – 0.3	V
I _{OUT}	Output Current	Continuous Surge	50 100	mA mA
I _{BB}	V _{BB} Sink/Source Current		±0.5	°C
Τ _Α	Operating Temperature Range		-40 to +85	°C
T _{STG}	Storage Temperature Range		-65 to +150	°C

Table 4. Absolute Maximum Ratings⁽¹⁾

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 5. DC Characteristics (V_{CC} = 0 V, V_{EE} = -2.5 V \pm 5% or V_{CC} = 2.5 V \pm 5%, V_{EE} = 0 V)

Symbol	Characteristics		–40°C			Unit		
Symbol	Characteristics	Min	Тур	Max	Min	Тур	Мах	Unit
I _{EE}	Power Supply Current		30	60		30	60	mA
V _{OH}	Output HIGH Voltage ⁽¹⁾	V _{CC} -1250	V _{CC} -990	V _{CC} -800	V _{CC} -1200	V _{CC} -960	V _{CC} -750	mV
V _{OL}	Output LOW Voltage ⁽¹⁾	V _{CC} -2000	V _{CC} -1550	V _{CC} -1150	V _{CC} -1925	V _{CC} -1630	V _{CC} -1200	mV
V _{outPP}	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
V _{BB}	Output Reference Voltage $I_{BB} = 200 \ \mu A$	V _{CC} -1400		V _{CC} -1200	V _{CC} -1400		V _{CC} -1200	mV
V _{PP}	Differential Input Voltage ⁽²⁾	0.12		1.3	0.12		1.3	mV
V _{CMR}	Differential Cross Point Voltage ⁽³⁾	V _{EE} +0.2		V _{CC} -1.0	V _{EE} +0.2		V _{CC} -1.0	mV
I _{IN}	Input Current			±150			±150	μA

1. Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase.

2. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

3. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Table 6. DC Characteristics (V_{CC} = 0 V, V_{EE} = -3.8 V to -3.135 V or V_{CC} = 3.135 V to 3.8 V, V_{EE} = 0 V)

Symbol	Characteristics		–40°C			Unit		
Symbol	Characteristics	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		30	60		30	60	mA
V _{OH}	Output HIGH Voltage ⁽¹⁾	V _{CC} -1150	V _{CC} -1020	V _{CC} -800	V _{CC} -1200	V _{CC} -970	V _{CC} -750	mV
V _{OL}	Output LOW Voltage ⁽¹⁾	V _{CC} -1950	V _{CC} -1620	V _{CC} -1250	V _{CC} -2000	V _{CC} -1680	V _{CC} -1300	mV
VoutPP	Output Peak-to-Peak Voltage	200			200			mV
V _{IH}	Input HIGH Voltage	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
V _{BB}	Output Reference Voltage I _{BB} = 200 μA	V _{CC} -1400		V _{CC} -1200	V _{CC} -1400		V _{CC} -1200	mV
V _{PP}	Differential Input Voltage ⁽²⁾	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage ⁽³⁾	V _{EE} +0.2		V _{CC} -1.1	V _{EE} +0.2		V _{CC} -1.1	V
I _{IN}	Input Current			±150			±150	μA

1. Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase.

2. V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

3. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Symbol	Charactoristics	–40°C		25°C			85°C			Unit	
Symbol	Gildiacteristics	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Output Frequency	2			2			2			GHz
t _{PLH} t _{PHL}	Propagation Delay (Differential) CLK to Q, \overline{Q}	300	355	425	300	375	475	300	400	525	ps
t _{SKEW}	Within Device Skew ⁽²⁾ Q, \overline{Q} Device-to-Device Skew ⁽²⁾		23	45 125		23	45 175		23	45 225	ps ps
t_{JITTER}	Cycle-to-Cycle Jitter RMS (1o)			1			1			1	ps
V _{PP}	Input Peak-to-Peak Voltage Swing (Differential)	200		1200	200		1200	200		1200	mV
V_{CMR}	Differential Cross Point Voltage	V _{EE} +0.2		V _{CC} -1.2	V _{EE} +0.2		V _{CC} -1.2	V _{EE} +0.2		V _{CC} -1.2	V
t _r /t _f	Output Rise/Fall Time (20%–80%)	70		225	70		250	70		275	ps

1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 ohms to V_{CC}=2.0 V.

2. Skew is measured between outputs under identical transitions.

Figure 2. Typical Termination for Output Driver and Device Evaluation

PACKAGE DIMENSIONS

© FREE	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NO	IT TO SCALE	
TITLE:				DOCUMENT NO	: 98ASH70169A	RE∨: B
	20 LD ISSUP, PI	IICH	0.65MM	CASE NUMBER	2: 948E-03	09 MAR 2005
				STANDARD: JE	DEC	
CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE					PAGE 1 OF 3	

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCAL		
TITLE:		DOCUMENT NO]: 98ASH70169A	RE∨: B	
20 LD TSSOP, PITC	20 LD TSSOP, PITCH 0.65MM			09 MAR 2005	
		STANDARD: JE	DEC		
CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE					

PACKAGE DIMENSIONS

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.
- 3 DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- /1 DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

/7 dimensions are to be determined at datum plane [-w-].

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			Mechanical outline		PRINT VERSION NOT TO SCALE	
TITLE:				DOCUMENT NE]: 98ASH70169A	RE∨: B
	20 LD TSSOP,	PITCH	1 0.65MM	CASE NUMBER: 948E-03		09 MAR 2005
				STANDARD: JE	DEC	
CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE						PAGE 3 OF 3

We've Got Your Timing Solution

6024 Silver Creek Valley Road San Jose, California 95138 Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Technical Support netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.