

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

June 1997 Revised December 2000

GTLP16616 17-Bit TTL/GTLP Bus Transceiver with Buffered Clock

General Description

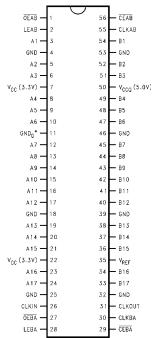
The GTLP16616 is a 17-bit registered bus transceiver that provides TTL to GTLP signal level translation. It allows for transparent, latched and clocked modes of data flow and provides a buffered GTLP (CLKOUT) clock output from the TTL CLKAB. The device provides a high speed interface between cards operating at TTL logic levels and a back-plane operating at GTLP logic levels. High speed back-plane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is process, voltage, and temperature (PVT) compensated. Its function is similar to BTL and GTL but with different output levels and receiver threshold. GTLP output LOW level is typically less than 0.5V, the output level HIGH is 1.5V and the receiver threshold is 1.0V.

Features

- Bidirectional interface between GTLP and TTL logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced CMOS technology
- Bushold data inputs on the A port eliminates the need for external pull-up resistors on unused inputs.
- Power up/down and power off high impedance for live insertion
- 5 V tolerant inputs and outputs on the LVTTL ports
- Open drain on GTLP to support wired-or connection
- Flow through pinout optimizes PCB layout
- \blacksquare D-type flip-flop, latch and transparent data paths
- A Port source/sink -32 mA/+32 mA
- GTLP Buffered CLKAB signal available (CLKOUT)

Ordering Code:


Order Number	Package Number	Package Description
GTLP16616MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118 0.300" Wide
GTLP16616MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Pin Descriptions

Pin Names	Description	
OEAB	A-to-B Output Enable (Active LOW)	
OEBA	B-to-A Output Enable (Active LOW)	
CEAB	A-to-B Clock Enable (Active LOW)	
CEBA	B-to-A Clock Enable (Active LOW)	
LEAB	A-to-B Latch Enable (Transparent HIGH)	
LEBA	B-to-A Latch Enable (Transparent HIGH	
V _{REF}	GTLP Reference Voltage	
CLKAB	A-to-B Clock	
CLKBA	B-to-A Clock	
A1-A17	A-to-B Data Inputs or B-to-A 3-STATE Outputs	
B1-B17	B-to-A Data Inputs or	
	A-to-B Open Drain Outputs	
CLKIN	B-to-A Buffered Clock Output	
CLKOUT	GTLP Buffered Clock Output of CLKAB	

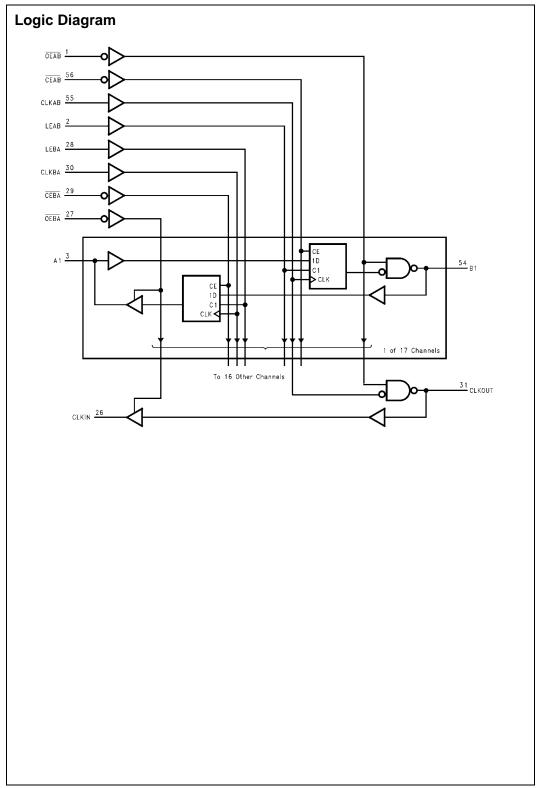
Connection Diagram

Functional Description

The GTLP16616 is a 17 bit registered transceiver containing D-type flip-flop, latch and transparent modes of operation for the data <u>path and a GTLP</u> translation of the CLKAB signal (CLKOUT). Data flow in each direction is controlled by <u>the clock enables</u> (CEAB and CEBA), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA) and <u>output enables</u> (OEAB and OEBA). The clock enables (CEAB and CEBA) enable all 17 bits. The output enables (OEAB and OEBA) control both the 17 bits of data and the CLKOUT/CLKIN buffered clock path.

For A-to-B data flow, when \overline{CEAB} is LOW, the device operates on the LOW-to-HIGH transition of CLKAB for the flip-flop and on the HIGH-to-LOW transition of LEAB for the latch path. That is, if \overline{CEAB} is LOW and LEAB is LOW the A data is latched regardless as to the state of CLKAB (HIGH or LOW) and if LEAB is HIGH the device is in transparent mode. When \overline{OEAB} is LOW the <u>outputs are active</u>. When \overline{OEAB} is HIGH the outputs are HIGH impedance. The data flow of B-to-A is similar except that \overline{CEBA} , \overline{OEBA} , LEBA and CLKBA are used.

Truth Table


(Note 1)

Inputs				Output	Mode	
CEAB	OEAB	LEAB	CLKAB	Α	В	
Х	Н	Х	Х	Х	Z	Latched
L	L	L	Н	Χ	B ₀ (Note 2)	storage
L	L	L	L	X	B ₀ (Note 3)	of A data
Х	L	Н	Х	L	L	Transparent
Х	L	Н	Χ	Н	Н	
L	L	L	1	L	L	Clocked storage
L	L	L	\uparrow	Н	Н	of A data
Н	L	L	Х	Х	B ₀ (Note 3)	Clock inhibit

 $\textbf{Note 1:} \ A-to-B \ data \ flow \ is \ shown. \ B-to-A \ data \ flow \ is \ similar \ but \ uses \ \overline{OEBA}, \ LEBA, \ CLKBA, \ and \ \overline{CEBA}.$

Note 2: Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH prior to LEAB going LOW.

Note 3: Output level before the indicated steady-state input conditions were established.

Absolute Maximum Ratings(Note 4) Recommended Operating

Conditions (Note 6)

 $\label{eq:supply Voltage VCC} \begin{tabular}{lll} Supply Voltage (V_{CC}) & -0.5V to +7.0V \\ DC Input Voltage (V_I) & -0.5V to +7.0V \\ \end{tabular}$

DC Input Voltage (V_I) = -0.5V to +7.0 DC Output Voltage (V_O)

Outputs 3-STATE -0.5V to +7.0V Outputs Active (Note 5) -0.5V to V_{CC} + 0.5V

DC Output Sink Current into

A Port I_{OL} 64 mA

DC Output Source Current from

A Port I_{OH} –64 mA

DC Output Sink Current

into B Port in the LOW State, I_{OL} 80 mA DC Input Diode Current (I_{IK})

 $V_1 < 0V$ –50 mA

DC Output Diode Current (I_{OK})

 $\begin{array}{ccc} V_O < 0V & -50 \text{ mA} \\ V_O > V_{CC} & +50 \text{ mA} \\ \text{ESD Rating} & >2000V \end{array}$

Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

CONTROL (Note 6)

Supply Voltage $V_{\rm CC}$

 $\begin{array}{c} \rm V_{CC} & 3.15V \ to \ 3.45V \\ \rm V_{CCQ} & 4.75V \ to \ 5.25V \\ \\ \rm Bus \ Termination \ Voltage \ (V_{TT}) \ GTLP & 1.35V \ to \ 1.65V \\ \end{array}$

Input Voltage (V_I)

on A Port and Control Pins 0.0V to 5.5V

HIGH Level Output Current (I_{OH})

A Port –32 mA

LOW Level Output Current (I_{OL})

A Port +32 mA
B Port +34 mA

Operating Temperature (T_A) -40°C to +85°C

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating.

The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I_{O} Absolute Maximum Rating must be observed.

Note 6: Unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, V_{REF} = 1.0V (unless otherwise noted).

	Symbol	Test Conditi	ons	Min	Typ (Note 7)	Max	Units
V _{IH}	B Port			V _{REF} +0.1		V _{TT}	V
	Others			2.0			V
V _{IL}	B Port			0.0		V _{REF} -0.1	V
	Others					8.0	V
V _{REF}	GTLP				1.0		V
	GTL				0.8		V
V _{IK}		V _{CC} = 3.15V,	$I_I = -18 \text{ mA}$			-1.2	V
		V _{CCQ} = 4.75V					
V _{OH}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 8)	$I_{OH} = -100 \mu A$	V _{CC} -0.2			
		V _{CC} = 3.15V	$I_{OH} = -8 \text{ mA}$	2.4			V
		V _{CCQ} = 4.75V	$I_{OH} = -32 \text{ mA}$	2.0			
V _{OL}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 8)	$I_{OL} = 100 \mu A$			0.2	
		V _{CC} = 3.15V	$I_{OL} = 32 \text{ mA}$			0.5	V
		V _{CCQ} = 4.75V					
	B Port	V _{CC} = 3.15V V _{CCQ} = 4.75V	$I_{OL} = 34 \text{ mA}$			0.65	V
I _I	Control Pins	V _{CC} , V _{CCQ} = 0 or Max	$V_I = 5.5V$ or $0V$			±10	μΑ
	A Port	V _{CC} = 3.45V	$V_1 = 5.5V$			20	
		V _{CCQ} = 5.25V	$V_I = V_{CC}$			1	μΑ
			$V_I = 0$			-30	
	B Port	V _{CC} = 3.45V	$V_I = V_{CC}$			5	
		V _{CCQ} = 5.25V	$V_I = 0$			-5	μΑ
I _{OFF}	A Port and Control Pins	$V_{CC} = V_{CCQ} = 0$	V_I or $V_O = 0$ to 4.5V			100	μΑ
I _{I(hold)}	A Port	V _{CC} = 3.15V,	$V_1 = 0.8V$	75			
		V _{CCQ} = 4.75V	$V_I = 2.0V$	-20			μΑ
l _{OZH}	A Port	V _{CC} = 3.45V,	$V_0 = 3.45V$			1	
	B Port	V _{CCQ} = 5.25V	$V_0 = 1.5V$			5	μΑ
I _{OZL}	A Port	V _{CC} = 3.45V,	$V_0 = 0$			-20	
	B Port	V _{CCQ} = 5.25V	V _O = 0.65V			-10	μΑ

DC Electrical Characteristics (Continued)

Symbol		Test Conditions		Min	Typ (Note 7)	Max	Units
I _{CCQ}	A or B	V _{CC} = 3.45V,	Outputs HIGH		30	40	
(V _{CCQ})	Ports	V _{CCQ} = 5.25V,	Outputs LOW		30	40	mA
		$I_O = 0$,					IIIA
		$V_I = V_{CCQ}$ or GND	Outputs Disabled		30	40	
I _{CC}	A or B	$V_{CC} = 3.45V, V_{CCQ} = 5.25V, I_{O} = 0,$	Outputs HIGH		0	1	
(V_{CC})	Ports		Outputs LOW		0	1	mA
		$V_I = V_{CC}$ or GND	Outputs Disabled		0	1	
ΔI_{CC}	A Port and	V _{CC} = 3.45V,	One Input at 2.7V		0	1	
(Note 9)	Control Pins	$V_{CC} = 5.25V,$					mA
		A or Control Inputs at					IIIA
		V _{CC} or GND					
C _{IN}	Control Pins		$V_I = V_{CCQ}$ or 0		8		
C _{I/O}	A Port		$V_I = V_{CCQ}$ or 0		9		pF
C _{I/O}	B Port		$V_I = V_{CCQ}$ or 0		6		

Note 7: All typical values are at $V_{CC}=3.3 \text{V}, \, V_{CCQ}=5.0 \text{V}, \, \text{and} \, \, T_{A}=25^{\circ}C.$

Note 8: For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions.

Note 9: This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

AC Operating Requirements

Over recommended ranges of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted).

	Symbo	Min	Max	Unit		
f _{MAX} Maximum Clock Frequency			175		MHz	
t _W	Pulse Duration	LEAB or LEBA HIGH	3.0			
		CLKAB or CLKBA HIGH or LOW	3.2		ns	
t _S	Setup Time	A before CLKAB↑	0.5			
		B before CLKBA↑	3.1			
		A before LEAB↓	1.3			
		B before LEBA↓	3.7		ns	
		CEAB before CLKAB↑	0.7			
		CEBA before CLKBA↑	1.0			
t _H	Hold Time	A after CLKAB↑	1.5			
		B after CLKBA↑	0.0			
		A after LEAB↓	0.5			
		B after LEBA↓	0.0		ns	
		CEAB after CLKAB↑	1.5			
		CEBA after CLKBA↑	1.7			

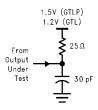
AC Electrical Characteristics

Over recommended range of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted). $C_L = 30$ pF for B Port and $C_L = 50$ pF for A Port.

Symbol	From	То	Min	Тур	Max	Unit	
	(Input)	(Output)		(Note 10)			
t _{PLH}	A	В	1.0	4.3	6.5		
t _{PHL}			1.0	5.0	8.2	ns	
t _{PLH}	LEAB	В	1.8	4.5	6.7	20	
t _{PHL}			1.5	5.3	8.7	ns	
t _{PLH}	CLKAB	В	1.8	4.6	6.7		
t _{PHL}			1.5	5.4	8.7	ns	
PLH	CLKAB	CLKOUT	3.0	6.2	10.0		
t _{PHL}			3.0	5.7	10.0	ns	
t _{PLH}	OEAB	B or CLKOUT	1.6	4.4	6.3	ns	
PHL			1.3	6.1	9.8		
SKEW	B (Note 11)	CLKOUT	0		2	ns	
RISE	Transition time, B o	utputs (20% to 80%)		2.6		no	
FALL	Transition time, B o	utputs (20% to 80%)		2.6		ns	
PLH	В	А	2.0	5.6	8.2		
PHL			1.4	5.0	7.2	ns	
PLH	LEBA	А	2.1	4.2	6.3		
PHL			1.9	3.3	5.0	ns	
PLH	CLKBA	А	2.3	4.4	6.8		
PHL			2.1	3.5	5.2	ns	
PLH	CLKOUT	CLKIN	3.0	6.0	10.0	nc	
PHL			3.0	6.4	10.0	ns	
_{PZH} , t _{PZL}	OEBA	A or CLKIN	1.5	5.0	6.4		
PHZ, ^t PLZ			1.4	3.9	8.0	ns	

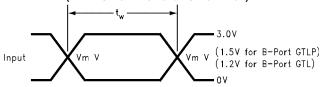
Note 10: All typical values are at $V_{CC} = 3.3 V$, $V_{CCQ} = 5.0 V$, and $T_A = 25 ^{\circ} C$.

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delays for the CLKOUT pin and any B output transition when measured with reference to CLKAB1. This guarantees the relationship between B output data and CLKOUT such that data is coincident or ahead of CLKOUT. This specification is guaranteed but not tested.

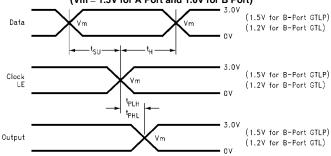

Test Circuits and Timing Waveforms

Test Circuit for A Outputs

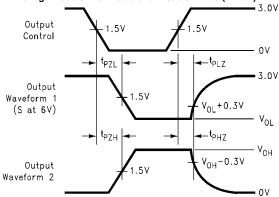
From Output Under Test $C_L = 50 \text{ pF}$ 500Ω 6V 9 Open GND


C_L includes probes and jig capacitance.

Test Circuit for B Outputs



 ${
m C_L}$ includes probes and jig capacitance. For B Port outputs, ${
m C_L}=30$ pF is used for worst case edge rate.


Voltage Waveforms Pulse Duration (Vm = 1.5V for A Port and 1.0V for B Port)

Voltage Waveforms Propagation Delay and Setup and Hold Times (Vm = 1.5V for A Port and 1.0V for B Port)

Voltage Waveforms Enable and Disable Times (A Port)

Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. All input pulses have the following characteristics: frequency = 10 MHz, $t_r = t_f = 2$ ns, $Z_O = 50\Omega$. The outputs are measured one at a time with one transition per measurement.

Physical Dimensions inches (millimeters) unless otherwise noted 0.720 - 0.730 [18.30 - 18.54] - A -0.398 - 0.417 [10.10 - 10.60] LEAD #1 ⊕ 0.010[0.25] C B S A S 0.291 - 0.299 [7.40 - 7.59] _0.005 - 0.009 [0.13 - 0.22] - 0.025 [0.635] TYP 0.020 ±0.003 [0.51 ±0.08] TYP-GAUGE PLANE = 0.008 - 0.012 [0.21 - 0.30] TYP -0.010 [0.25] 0.020 - 0.040 [0.51 - 1.01] DETAIL E TYP 45° x 0.015 - 0.025 [0.39 - 0.63] 0.096 - 0.108 [2.44 - 2.74] SEATING PLANE SEE DETAIL E - D -☐ 0.004[0.10] 0.010 [0.25] MIN TYP - C -0.025 [0.635] TYP MS56A (REV E) 56-Lead Shrink Small Outline Package, JEDEC MO-118 0.300" Wide Package Number MS56A

MTD56 (REV B)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 14.0 ± 0.1 -A-SYMM Ç (9.2 TYP) 8.1 -B-(5.6 TYP) 4.05 □ 0.2 C B A (0.3 TYP) ALL LEAD TIPS - (0.5 TYP) LAND PATTERN RECOMMENDATION △ 0.1 C SEE DETAIL A ALL LEAD TIPS (0.90) <u>финанинанинанинанина</u> 1.1[†]мах - 0.5 TYP 0.17 - 0.27 TYP └ 0.10 ± 0.05 TYP | Φ | 0.13 M | A | B S | C S GAGE PLANE _□0.25 SEATING PLANE 0.60 +0.15

56-Lead Thin Shrink Small Outline Package, JEDEC MO-153, 6.1mm Wide Package Number MTD56

DETAIL A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative