40V P-CHANNEL ENHANCEMENT MODE MOSFET #### **Product Summary** | V _{(BR)DSS} | R _{DS(on)} max | I _D max (A)
T _A = 25°C
(Notes 6) | | |----------------------|--------------------------------|--|--| | 401/ | 25mΩ @ V _{GS} = -10V | -8.0 | | | -40V | 45mΩ @ V _{GS} = -4.5V | -6.0 | | ### **Description and Applications** This MOSFET has been designed to minimize the on-state resistance and yet maintain superior switching performance, making it ideal for high efficiency power management applications. - Motor control - Backlighting - DC-DC Converters - Printer equipment ### **Features and Benefits** - Low R_{DS(on)} Minimizes conduction losses - Fast switching speed Minimizes switching losses - Totally Lead-Free & Fully RoHS compliant (Notes 1 & 2) - Halogen and Antimony Free. "Green" Device (Note 3) - Qualified to AEC-Q101 Standards for High Reliability #### **Mechanical Data** - Case: SO-8 - Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0 (Note 1) - Moisture Sensitivity: Level 1 per J-STD-020 - Terminals: Finish Matte Tin annealed over Copper lead frame. Solderable per MIL-STD-202, Method 208 (23) - Weight: 0.074 grams (approximate) Top View Pin-Out Top View Device symbol #### **Ordering Information** (Note 4) | ĺ | Product | Marking | Reel size (inches) | Tape width (mm) | Quantity per reel | |---|---------------|---------|--------------------|-----------------|-------------------| | | DMP4025LSS-13 | P4025LS | 13 | 12 | 2.500 | Notes: - 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. - 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen and Antimony free, "Green" and Lead-Free. - 3. Halogen and Antimony free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds. - 4. For packaging details, go to our website at http://www.diodes.com ### **Marking Information** Oll = Manufacturer's Marking P4025LS = Product Type Marking Code YYWW = Date Code Marking YY = Year (ex: 10 = 2010) WW = Week (01 - 53) ### **Maximum Ratings** @T_A = 25°C unless otherwise specified | Characteristic | | Symbol | Value | Units | | |------------------------------------|---------------------|-------------------------|------------------|-------|----| | Drain-Source Voltage | | | V _{DSS} | -40 | \/ | | Gate-Source Voltage | Gate-Source Voltage | | V _{GSS} | ±20 | V | | | | (Notes 6) | | -8.0 | | | Continuous Drain Current | $V_{GS} = -10V$ | $T_A = 70$ °C (Notes 6) | I _D | -6.9 | | | | | (Notes 5) | | -6.0 | _ | | Pulsed Drain Current | $V_{GS} = -10V$ | (Notes 7) | I _{DM} | -30 | Α | | Continuous Source Current | (Body diode) | (Notes 7) | Is | -8.0 | | | Pulsed Source Current (Body diode) | | (Notes 7) | I _{SM} | -30 | | ### Thermal Characteristics @TA = 25°C unless otherwise specified | Characteristic | | Symbol | Value | Unit | |---|-----------|----------------------------------|-------------|------| | Dawar Dissipation | (Notes 5) | | 1.52 | w | | Power Dissipation | (Notes 6) | P _D | 2.4 | VV | | Thermal Decistores, Junction to Ambient | (Notes 5) | D | 82 | | | Thermal Resistance, Junction to Ambient | (Notes 6) | R _{θJA} | 52 | °C/W | | Thermal Resistance, Junction to Lead | (Notes 8) | $R_{ heta JL}$ | 48.85 | | | Operating and Storage Temperature Range | | T _{J,} T _{STG} | -55 to +150 | °C | Notes: - For a device surface mounted on minimum recommended FR4 PCB with high coverage of single sided 1oz copper, in still air conditions; the device is measured when operating in a steady-state condition. Same as note (2), except the device is surface mounted on 25mm X 25mm X 1.6mm FR4 PCB. Repetitive rating on 25mm X 25mm FR4 PCB, D=0.02, pulse width 300µs pulse width by maximum junction temperature. Thermal resistance from junction to solder-point (at the end of the drain lead). ### **Thermal Characteristics** Fig. 1 Single Pulse Maximum Power Dissipation # Electrical Characteristics T_A = 25°C unless otherwise specified | Characteristic | Symbol | Min | Тур | Max | Unit | Test Condition | | |--|----------------------|------|------|------|--|--|--| | OFF CHARACTERISTICS | | | | | | | | | Drain-Source Breakdown Voltage | BV _{DSS} | -40 | _ | _ | V | $I_D = -250 \mu A, V_{GS} = 0 V$ | | | Zero Gate Voltage Drain Current | I _{DSS} | _ | _ | -1.0 | μΑ | $V_{DS} = -40V, V_{GS} = 0V$ | | | Gate-Source Leakage | IGSS | _ | _ | ±100 | nA | $V_{GS} = \pm 20V, V_{DS} = 0V$ | | | ON CHARACTERISTICS | | | | | • | • | | | Gate Threshold Voltage | V _{GS(th)} | -0.8 | -1.3 | -1.8 | V | $I_D = -250 \mu A, V_{DS} = V_{GS}$ | | | Static Drain Source On Registeres (Note 0) | 0 | | 18 | 25 | mΩ | $V_{GS} = -10V, I_D = -3A$ | | | Static Drain-Source On-Resistance (Note 9) | R _{DS (ON)} | | 30 | 45 | 11112 | $V_{GS} = -4.5V, I_{D} = -3A$ | | | Forward Transconductance (Notes 9 & 10) | g _{fs} | _ | 16.6 | _ | S | $V_{DS} = -5V, I_{D} = -3A$ | | | Diode Forward Voltage (Note 9) | V_{SD} | _ | -0.7 | -1.0 | V | $I_S = -1A$, $V_{GS} = 0V$ | | | DYNAMIC CHARACTERISTICS (Note 10) | | | | | | | | | Input Capacitance | C _{iss} | | 1640 | _ | | V _{DS} = -20V, V _{GS} = 0V
f = 1MHz | | | Output Capacitance | Coss | _ | 179 | _ | pF | | | | Reverse Transfer Capacitance | C_{rss} | _ | 128 | _ | | I = IIVIHZ | | | Gate Resistance | R_g | _ | 6.43 | _ | Ω | $V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$ | | | Total Gate Charge (Note 11) | Q_g | _ | 14.0 | _ | | V _{GS} = -4.5V | | | Total Gate Charge (Note 11) | Qq | _ | 33.7 | _ | | V _{DS} = -20V | | | Gate-Source Charge (Note 11) | Qgs | | 5.5 | _ | nC | $V_{GS} = -10V$ $I_D = -3A$ | | | Gate-Drain Charge (Note 11) | Q_{gd} | _ | 7.3 | _ | | | | | Turn-On Delay Time (Note 11) | t _{D(on)} | | 6.9 | _ | | · | | | Turn-On Rise Time (Note 11) | | _ | 14.7 | _ | | $V_{DD} = -20V, V_{GS} = -10V$ | | | Turn-Off Delay Time (Note 11) | t _{D(off)} | _ | 53.7 | _ | $\int_{I_D} \int_{I_D} \int_{I$ | | | | Turn-Off Fall Time (Note 11) | t _f | | 30.9 | _ | | | | Notes: - 9. Measured under pulsed conditions. Pulse width $\leq 300 \mu s;$ duty cycle $\leq 2\%$ - 10. For design aid only, not subject to production testing.11. Switching characteristics are independent of operating junction temperatures. # **Typical Characteristics** Fig. 8 On-Resistance Variation with Temperature Fig. 10 Diode Forward Voltage vs. Current # **Package Outline Dimensions** | SO-8 | | | | | | |----------------------|-------------------|------|--|--|--| | Dim | Min | Max | | | | | Α | - | 1.75 | | | | | A1 | 0.10 | 0.20 | | | | | A2 | 1.30 | 1.50 | | | | | А3 | 0.15 | 0.25 | | | | | b | 0.3 | 0.5 | | | | | D | 4.85 | 4.95 | | | | | Е | 5.90 | 6.10 | | | | | E1 | 3.85 3.95 | | | | | | е | e 1.27 Typ | | | | | | h | - 0.35 | | | | | | L | 0.62 0.82 | | | | | | θ | 0° 8° | | | | | | All Dimensions in mm | | | | | | ## **Suggested Pad Layout** | Dimensions | Value (in mm) | | | |------------|---------------|--|--| | X | 0.60 | | | | Υ | 1.55 | | | | C1 | 5.4 | | | | C2 | 1.27 | | | #### **IMPORTANT NOTICE** DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. #### LIFE SUPPORT Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: - A. Life support devices or systems are devices or systems which: - 1. are intended to implant into the body, or - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. - B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2012, Diodes Incorporated www.diodes.com