

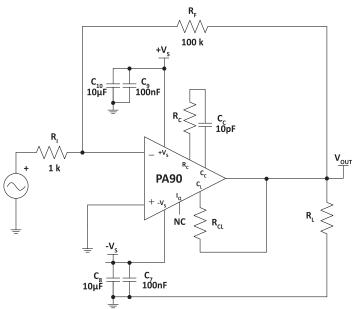
High Voltage Power Operational Amplifiers

FEATURES

- High Voltage 400V (±200V)
- Low Quiescent Current 10mA
- High Output Current 200mA
- Programmable Current Limit
- High Slew Rate 300V/μs

APPLICATIONS

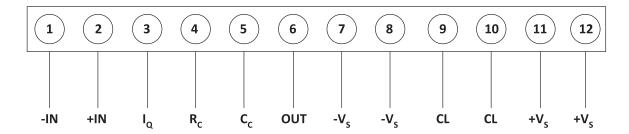
- Piezoelectric Positioning
- High Voltage Instrumentation
- Electrostatic Transducers
- Programmable Power Supplies up to 390V



DESCRIPTION

The PA90 is a high voltage, low quiescent current MOSFET operational amplifier designed as a low cost solution for driving continuous output currents up to 200mA and pulse currents up to 350mA. The safe operating area (SOA) has no second breakdown limitations and can be observed for all type loads by choosing an appropriate current limiting resistor. The MOSFET output stage is biased AB for linear operation. External compensation provides flexibility in choosing bandwidth and slew rate for the application. Apex Microtechnology's Power SIP package uses a minimum of board space allowing for high density circuit boards. The 12-pin Power SIP is electrically isolated.

TYPICAL CONNECTIONS


Figure 1: Typical Connection

PINOUT AND DESCRIPTION TABLE

Figure 2: External Connections

Pin Number	Name	Description
1	-IN	The inverting input.
2	+IN	The non-inverting input.
3	IQ	Quiescent current reduction pin. Connect to pin 5 to disable the AB bias. See applicable section.
4	RC	Compensation resistor connection. Select value based on Phase Compensation. See applicable section.
5	СС	Compensation capacitor connection. Select value based on Phase Compensation. See applicable section.
6	OUT	The output. Connect this pin to load and to the feedback resistors.
7, 8	-Vs	The negative supply rail. Pins 7 and 8 are not internally connected and must be shorted.
9, 10	CL	Connect to the current limit resistor. Output current flows into/out of these pins through R_{CL} . The output pins and the load are connected to the other side of R_{CL} . Pins 9 and 10 are internally connected.
11, 12	+Vs	The positive supply rail. Pins 11 and 12 are internally connected.

SPECIFICATIONS

All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical performance characteristics and specifications are derived from measurements taken at typical supply voltages and $T_C = 25$ °C.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units
Supply Voltage, +V _s to -V _s	+V _s to -V _s		400	V
Output Current, source, sink, peak, within SOA	I _O		350	mA
Power Dissipation, continuous @ T _c = 25°C	P _D		30	W
Input Voltage, differential	V _{IN (Diff)}	-20	+20	V
Input Voltage, common mode	V _{cm}	-V _S	+V _S	V
Temperature, pin solder, 10s max.			260	°C
Temperature, junction ¹	T _J		150	°C
Temperature Range, storage		-55	125	°C
Operating Temperature Range, case	T _C	-40	85	°C

^{1.} Long term operation at the maximum junction temperature will result in reduced product life. Derate power dissipation to achieve high MTTF.

The PA90 is constructed from MOSFET transistors. ESD handling procedures must be observed. The exposed substrate contains beryllia (BeO). Do not crush, machine, or subject to temperatures in excess of 850°C to avoid generating toxic fumes.

INPUT

Parameter	Test Conditions	Min	Тур	Max	Units
Offset Voltage, initial			0.5	2	mV
Offset Voltage vs. Temperature	Full temp range		15	50	μV/°C
Offset Voltage vs. Supply			10	25	μV/V
Offset Voltage vs. Time			75		μV/kh
Bias Current, initial			200	2000	pA
Bias Current vs. Supply			4		pA/V
Offset Current, initial			50	500	pA
Input Impedance, DC			10 ¹¹		Ω
Input Capacitance			4		pF
Common Mode Voltage Range ¹		±V _S ∓ 15			V
Common Mode Rejection, DC	V _{CM} = ±90V	80	98		dB
Noise	100 kHz bandwidth, $R_S = 1 \text{ k}\Omega$, $C_C = \text{OPEN}$		1		μV RMS

^{1.} $+V_S$ and $-V_S$ denote the positive and negative power supply rail respectively.

PA90

GAIN

Parameter	Test Conditions	Min	Тур	Max	Units
Open Loop @ 15Hz	$R_L = 2 k\Omega, C_C = Open$	94	111		dB
Gain Bandwidth Product @ 1MHz	$R_L = 2 k\Omega, C_C = Open$		100		MHz
Power Bandwidth	$R_L = 2 k\Omega, C_C = Open$		470		kHz
Phase Margin	Full temp range		60		0

OUTPUT

Parameter	Test Conditions	Min	Тур	Max	Units
Voltage Swing ¹	I _O = 200mA	±V _S ∓ 12	±V _S ∓ 10		V
Current, continuous		200			mA
Slew Rate, A _V = 100	C _C = Open	240	300		V/µs
Capacitive Load, A _V = +1	Full temp range	470			pF
Settling Time to 0.1%	C _C = Open, 2V step		1		μs
Resistance, no load			50		Ω

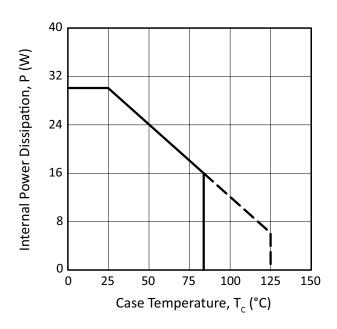
^{1.} $+V_S$ and $-V_S$ denote the positive and negative power supply rail respectively.

POWER SUPPLY

Parameter	Test Conditions	Min	Тур	Max	Units
Voltage ¹		±40	±150	±200	V
Current, quiescent			10	14	mA

^{1.} Derate max supply rating 0.625 V/°C below 25°C case. No derating needed above 25°C case.

THERMAL


Parameter	Test Conditions	Min	Тур	Max	Units
Resistance, AC, junction to case ¹	Full temp range, F > 60 Hz			2.5	°C/W
Resistance, DC, junction to case	Full temp range, F < 60 Hz			4.2	°C/W
Resistance, junction to air	Full temp range		30		°C/W
Temperature Range, case Meets full range specifications		-25		+85	°C

^{1.} Rating applies if the output current alternates between both output transistors at a rate faster than 60 Hz.

TYPICAL PERFORMANCE GRAPHS

Figure 3: Power Derating

Figure 4: Normalized Quiescent Current

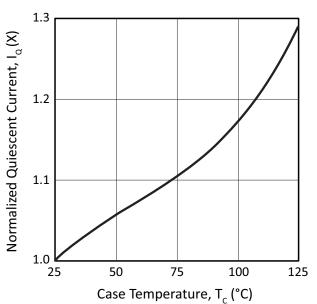


Figure 5: Small Signal Response

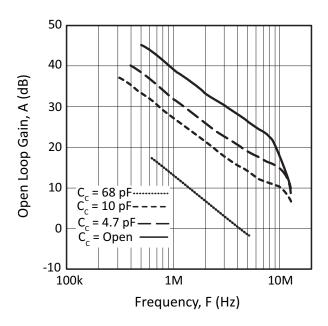


Figure 6: Phase Response

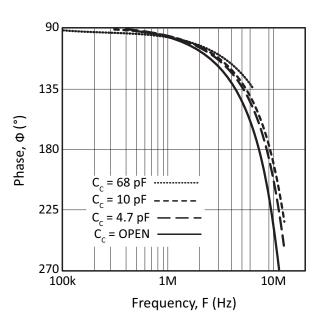


Figure 7: Output Voltage Swing

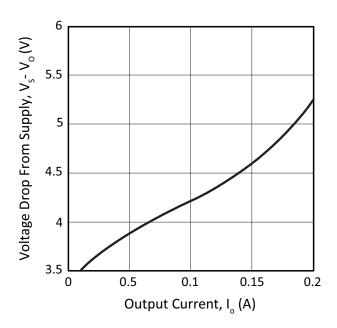


Figure 8: Power Response

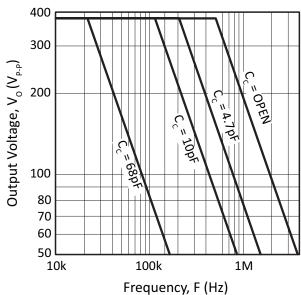
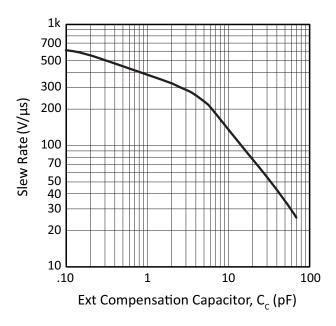
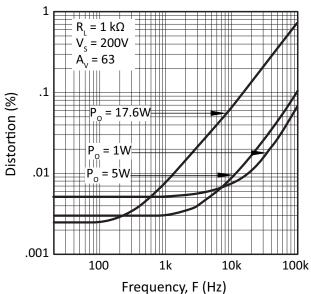




Figure 9: Slew Rate

Figure 10: Harmonic Distortion

Figure 11: Input Noise Voltage

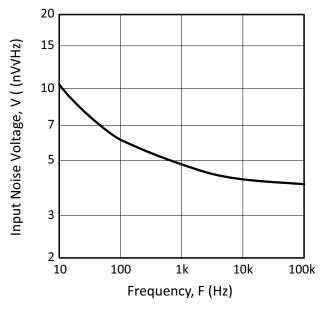
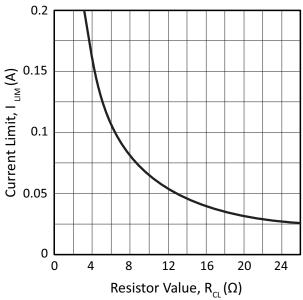
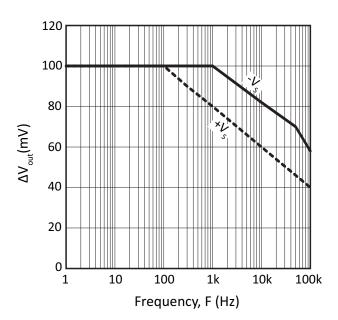




Figure 12: Current Limit

Figure 13: Power Supply Rejection

SAFE OPERATING AREA (SOA)

The safe operating area curves define the maximum additional internal power dissipation the amplifier can tolerate when it produces the necessary output to drive an external load.

The MOSFET output stage of this power operational amplifier has two distinct limitations:

- 1. The current handling capability of the MOSFET geometry and the wire bonds.
- 2. The junction temperature of the output MOSFETs.

Note: The output stage is protected against transient flyback. However, for protection against sustained, high energy flyback, external fast-recovery diodes should be used.

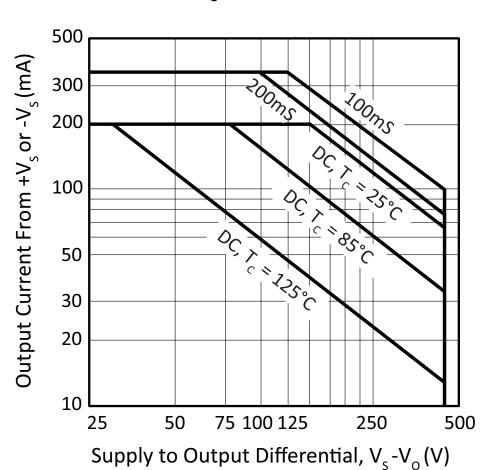
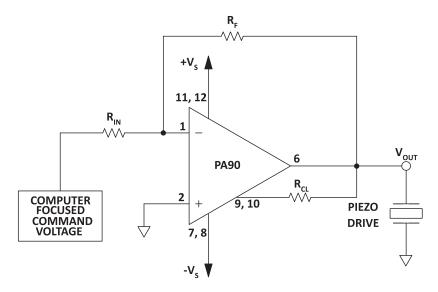


Figure 14: SOA


GENERAL

Please read Application Note 1 "General Operating Considerations" which covers stability, supplies, heat sinking, mounting, current limit, SOA interpretation, and specification interpretation. Visit www.apexanalog.com for Apex Microtechnology's complete Application Notes library, Technical Seminar Workbook, and Evaluation Kits.

TYPICAL APPLICATION

Low Power, Piezoelectric Positioning

Piezo positioning may be applied to the focusing of segmented mirror systems. The composite mirror may be composed of hundreds of elements, each requiring focusing under computer control. In such complex systems the PA90 reduces the costs of power supplies and cooling with its advantages of low cost and low quiescent power consumption while increasing circuit density with the SIP.

Figure 15: Typical Application

PHASE COMPENSATION

Gain	c _c *	R _C
≥1	68pF	100 Ω
≥5	10pF	100 Ω
≥10	4.7pF	0 Ω
≥30	NONE	0 Ω

 $^{{}^*}C_C$ To be rated for the full supply voltage ${}^+V_S$ to ${}^-V_S$. Use NPO ceramic (COG) type.

CURRENT LIMIT

For proper operation, the current limit resistor (R_{CL}) must be connected as shown in the typical connection diagram. For optimum reliability the resistor value should be set as high as possible. The value is calculated as follows; with the maximum practical value of 32 ohms.

$$R_{CL}(\Omega) = \frac{0.65 V}{I_{LIM}(A)}$$

INPUT PROTECTION

Although the PA90 can withstand differential voltages up to $\pm 20V$, additional external protection is recommended. Low leakage, low capacitance JFETs connected as diodes are recommended (e.g. 2N4416, Q1-Q4 in Figure 16). The differential input voltage will be clamped to $\pm 1.4V$. This is sufficient overdrive to produce maximum power bandwidth.

POWER SUPPLY PROTECTION

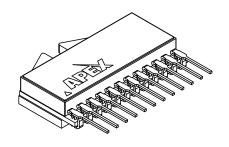
Unidirectional zener diode transient suppressors are recommended as protection on the supply pins. See Figure 16. The zeners clamp transients to voltages within the power supply rating and also clamp power supply reversals to ground. Whether the zeners are used or not, the system power supply should be evaluated for transient performance including power-on overshoot and power-off polarity reversals as well as line regulation.

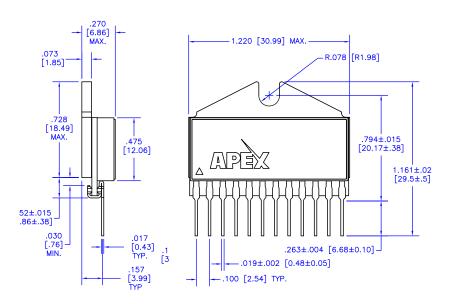
Conditions which can cause open circuits or polarity reversals on either power supply rail should be avoided or protected against. Reversals or opens on the negative supply rail is known to induce input stage failure. Unidirectional transzorbs prevent this, and it is desirable that they be both electrically and physically as close to the amplifier as possible.

Figure 16: Overvoltage Protection

STABILITY

The PA90 is externally compensated and performance can be tailored to the application. Use the graphs of small signal response and power response as a guide. The compensation capacitor C_C must be rated at 500V working voltage. An NPO capacitor is recommended. The compensation network C_CR_C must be mounted closely to the amplifier pins 4 and 5 to avoid spurious oscillation.


QUIESCENT CURRENT REDUCTION


When pin 3 (I_O) is shorted to pin 5 (CC2) the AB biasing of the output stage is disabled. This raises distortion since the output stage is then class C biased, but reduces the quiescent current by 1mA for a power dissipation savings of 0.4W. Pin 3 may be left open if not used.

PACKAGE DESIGN

Part Number	Apex Package Style	Description
PA90	DP	12-Pin SIP
PA90EE	EE	12-Pin SIP w/ formed leads

PACKAGE STYLE DP

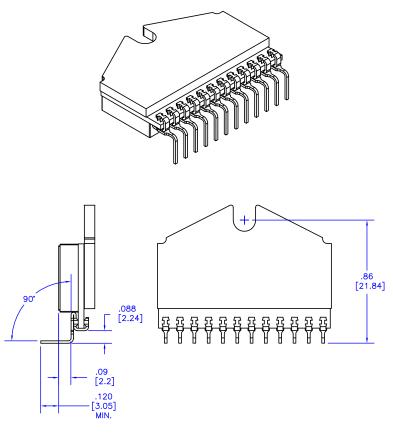
NOTES:

- Dimensions are inches & [mm].
- Dimensions are inches & [mm].

 Triangle on lid denotes pin 1.

 Pins: Alloy 510 phosphor bronze plated with matte tin (150 300µ")

 over nickel (50 µ" max.) underplate.


 Package: Vectra liquid crystal polymer, black

 Epoxy—sealed & ultrasonically welded non—hermetic package.

 Package weight: .367 oz. [11.41 g]

PACKAGE STYLE EE

NOTES:

- 1. Dimensions are inches & [mm].
- 2. For other dimensions and information on this package with unformed leads, see package DP.

NEED TECHNICAL HELP? CONTACT APEX SUPPORT!

For all Apex Microtechnology product questions and inquiries, call toll free 800-546-2739 in North America. For inquiries via email, please contact apex.support@apexanalog.com. International customers can also request support by contacting their local Apex Microtechnology Sales Representative. To find the one nearest to you, go to www.apexanalog.com

IMPORTANT NOTICE

Apex Microtechnology, Inc. has made every effort to insure the accuracy of the content contained in this document. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (expressed or implied). Apex Microtechnology reserves the right to make changes without further notice to any specifications or products mentioned herein to improve reliability. This document is the property of Apex Microtechnology and by furnishing this information, Apex Microtechnology grants no license, expressed or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Apex Microtechnology owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Apex Microtechnology integrated circuits or other products of Apex Microtechnology. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

APEX MICROTECHNOLOGY PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN PRODUCTS USED FOR LIFE SUPPORT, AUTOMOTIVE SAFETY, SECURITY DEVICES, OR OTHER CRITICAL APPLICATIONS. PRODUCTS IN SUCH APPLICATIONS ARE UNDERSTOOD TO BE FULLY AT THE CUSTOMER OR THE CUSTOMER'S RISK.

Apex Microtechnology, Apex and Apex Precision Power are trademarks of Apex Microtechnology, Inc. All other corporate names noted herein may be trademarks of their respective holders.